SCTO®-
PLATFORMS

SCTO Validation Platform

Writing function tests
Release date: 2025-01-01

This document is an integral component of the SCTO Validation Platform

Writing function tests 112

SCTO®:
PLATFORMS

1 Document development, review and version history

Development and Review

Authored/revised by:

Name Date
Alan Haynes," Elio Carreras? 2025-01-01
Version History
Version Date Author(s) Summary of Changes
1.0 2025-01-01 Alan Haynes, Initial version

The validation package contains a set of functions to assist in the running and reporting of tests that have been
published on the SCTO platform. The tests themselves are located in the validation_tests repository. The results
of the tests are then published as issues in the pkg_validation repository.

Tests are written using functions from the testthat package, and can be downloaded, run, and reported using the
functions in the validation package.

0.1 High level summary

This section gives a very high level overview of the steps in the process. Refer to the following sections for more
in depth information.

fork the validation_tests repository to your own GitHub account

clone the forked repository to your local machine

use validation::test skeleton() to create the necessary files for testing a new package or function
write the tests using the testthat package

test your new tests with validation::test()

commit your changes to git and push them to your GitHub fork

create a pull request to the validation_tests repository

address any issues highlighted by the reviewer

© N WON

0.2 Core principles

« the unit of testing is the function, not the package

« it is not necessary to test all functions, only those that are used in the product
» e.g. assuming that the Ime4 package is classified as being high risk, it may be that initially only imer is tested.
» Some time later, glmer is used in a product, and so it is necessary to test this function as well.

« tests should be written in a way that they can be run automatically

« tests are written using the testthat package

« tests are documented sufficiently to allow others to understand what is being tested and why (e.g. the
documentation establishes the user requirements)
» this principle is not thoroughly applied in this document as it is informative only. See existing examples in the

repository.

'Senior Statistician, Department of Clinical Research (DCR), University of Bern
2Senior Statistical Programmer, SAKK

Writing function tests 2/12

www.github.com/SwissClinicalTrialOrganisation/validation_tests
www.github.com/SwissClinicalTrialOrganisation/pkg_validation
https://testthat.r-lib.org/

SCTO®:
PLATFORMS

0.3 test_skeleton helps build the structure

The test_skeleton function can be used to create the relevant folder structure for testing a new package, or
adding a file for testing additional functions. In the code below, substitute pkg with the name of the package to be
tested and add the names of the function(s) you want to test in the funs argument.

test skeleton("pkg", funs = c("fun", "fun2", "etc"))
This will create a set of files in your working directory:

-- pkg
+- info.txt
+- setup-pkg.R
+- test-fun.R
+- test-fun2.R
+- test-etc.R

* info.txt file will contain the name of the package and a freetext description of what is tested,

* setup-pkg.Ris for any necessary setup code (e.g. installation of the package),

« for each function in the funs argument, a test-function.R file is created, which will contain the actual testing
code.

In the event that the package already has tests, the test skeleton function will not overwrite the existing files,
only adding any necessary test-function.R files.

Add the relevant tests to the test-function.R files and check that they work as expected (run test("package",
download = FALSE)).

0.4 Writing tests

Testing is performed via the testthat framework. All tests for a given function should be placed in a dedicated
test-function.R file.

Each test is comprised of one or more expectations and a descriptive name.

E.g.

test that("some meaningful message about the tests", {
expect equal(l + 1, 2)
expect true(is.numeric(1))
expect false(is.character(1))

})

Where multiple tests are to be made on what could be a single object, it is often useful to create the object outside
of the test_that function. This is particularly useful when different descriptive texts should be shown for the tests
(e.g. perhaps the coefficients and standard errors from a model):

obj <- some function(params)
test_that("test 1 on obj", {
expect equal(obj$value to test, expected value)

})
test that("test 2 on obj", {
expect equal(obj$another value to test, expected value)

})
If objects are only useful to the test, they can be created within the test that function.

test_that("tests on obj", {
obj <- some function(params)

Writing function tests 312

https://testthat.r-lib.org/

SCTO®:
PLATFORMS

expect equal(obj$value to test, expected value)
expect equal(obj$another value to test, expected value)

})

Making the description of the test meaningful is important, as it will help the user diagnose where the problem is.

testthat supports a large number of expectations, which are documented in the testthat documentation. We
demonstrate a few examples below.

0.4.1 Compare computation to a reference value

To test the computation of the function, the following code must be added to the testing file, for as many test
cases as considered appropriate:

test that("function f works", {
expect equal(f(x), y)
1)

Where f is the function to be tested, x are the input parameters for the function and y is the expected returned
value.

Note that is/may be necessary/desirable to set a tolerance for floating point comparisons. This can be done with
the tolerance argument.

0.4.2 Testing for errors, warnings and other messages

To test whether, under certain conditions, the function returns an error, a warning or a message, the following
corresponding code can be adapted, for as many test cases as considered appropriate:

test that("function f returns an error", {
expect error(f(x))

})

test that("function f returns a warning", {
expect warning(f(x))

})

test that("function f returns a message", {
expect message(f(x))

})

Where f is the function to be tested, x are the arguments that define the conditions. Use the regexp argument to
check for a particular error, warning or message.

test that("function f returns an error", {
expect error(f(x), regexp = "some error message")

})

In contrast, to test whether the function runs without returning an error, a warning or a message, the following
corresponding code can be adapted, for as many test cases as considered appropriate:

test that("function f runs without error", {
expect no error(f(x))

i)

test that("function f runs without a warning", {
expect warning(f(x))

Writing function tests 4/12

https://testthat.r-lib.org/reference/index.html

SCTO®:
PLATFORMS

})

test that("function f runs without a message", {
expect message(f(x))

})

0.4.3 Testing booleans

To test whether, under certain conditions, the function returns TRUE or FALSE, adapt the following code as
appropriate:

test that("function f returns TRUE", {
expect true(f(x))

1)
test that("function f returns FALSE", {

expect false(f(x))
1)

Where f is the function to be tested, x are the arguments that define the conditions.

0.4.4 Testing for NULL

To test whether, under certain conditions, the function returns NULL, the following code can be adapted, for as
many test cases as considered appropriate:

test that("function f returns NULL", {
expect null(f(x))
1)

0.4.5 Testing the type of object returned (base R)

To test whether, the function returns an object of a certain type, the following code can be adapted, for as many
test cases as considered appropriate:

test that("function f returns object of type XXX", {
expect type(f(x), type)
1)

Where f is the function to be tested, x are the arguments that define the conditions and type is any of the

following: “integer”, “character”, “factor”, “logical”, “double”.

0.4.6 Testing the class (s3) of an object

To test whether, the function returns an object of class s3, the following code can be adapted, for as many cases
as considered appropriate:

test that("function f returns object of class s3", {
expect s3 class(f(x), class)
1)

Where f is the function to be tested, x are the arguments that define the conditions and class is, among others,
any of the following: “data.frame”, “factor”, “Date”, “POSIXct”, etc.

Writing function tests 5/12

SCTO®:
PLATFORMS

0.4.7 Running tests under certain conditions

On occasion, it may be desirable to restrict the tests to specific package versions. This can be done by using the
skip_if functions in testthat.

For example, the pivot functions we introduced to tidyr in version 1.0.0. If we have tests on those functions, we
can restrict them to versions 1.0.0 and above with the following code:

skip if(packageVersion("tidyr") < "1.0.0")

This line can be placed at the top of the test file, before any tests are run. The equivalent can be done for versions
below a certain version, which might be useful for deprecated functions.

It might be suitable to stop tests from being run if the internet is not available:
skip if offline()
Or if a package can only be run on a specific operating system:

skip on os("mac")

0.5 Submitting tests to the platform

Once you have added the necessary tests, add the files to the validation_tests repository. The easiest way is to
create a fork of the repository, then navigate to the tests folder, click on “Add file” and then “Upload files”. Now you
can simply drag the pkg folder into the browser window and commit the change. You can now create a pull
request to the original repository to incorporate your code. It is also possible to fork the repository, clone it to your
computer and make the commit there, but this is not strictly necessary.

At this stage, the four-eye principle will be applied to the pull request to check the adequacy and quality of the
tests and code. If the reviewer agrees with your tests, they will be merged into the package. If they note any
issues, which you will see as comments in the GitHub pull request, you will need to address them before the tests
can be merged.

Once merged, the tests can be run via the validation package validation::test("packagename") and documented
in the repository at https://github.com/SwissClinicalTrialOrganisation/pkg_validation.

0.6 Worked example

Theory is all well and good, but it's always useful to see how that would be in practice.

Assume that we want to check that the im function from the stats package works as expected. We can write a
test file that checks that the function returns the expected coefficients and standard errors.

The following assumes that we have cloned the validation_tests repository to our computer and we are within that
project.

To begin with, we construct the testing files, specifically the test skeleton function. We only want to test the im
function, so we only pass that to the second argument. We also specify the dir argument to tell R where to create
the new files:

This will have created a stats folder within tests. Within that folder, there will be files called info.txt, setup-
stats.R, and test-1m.R

Writing function tests 6/12

https://github.com/SwissClinicalTrialOrganisation/validation_tests
https://github.com/SwissClinicalTrialOrganisation/pkg_validation

SCTO®:
PLATFORMS

0.6.1 test-1m.R

First we will write the actual tests that we want to run. Tests are entered into the test-1m.R file. Opening that file,
we see that there are just a few comments at the top of the file, with some reminders.

Write relevent tests for the function in here

Consider the type of function:

- is it deterministic or statistic?

- is it worth checking for errors/warnings under particular conditions?

We decide that we will use the mtcars dataset as our basis for testing 1m, so we can load the dataset. We want to
test both the linear effect of the number of cylinders on the miles per gallon, and the effect of the number of
cylinders (cyl), as well as when cyl is treated as a factor.

Write relevent tests for the function in here

Consider the type of function:

- is it deterministic or statistic?

- is it worth checking for errors/warnings under particular conditions?

data(mtcars)
mtcars$cyl f <- factor(mtcars$cyl)

Note that if there are multiple functions being tested (each in their own test-function.R file) that require the same
data, we can load and prepare the data in the setup-stats.R file.

We can also define the models that we want to test:

cmod <- Llm(mpg ~ cyl, data = mtcars)
fmod <- Im(mpg ~ cyl f, data = mtcars)

We do not include the model definitions within a test_that call because we will use the same models in multiple
tests. Again, if we needed to use those models for testing multiple functions, we could define them in the setup
file.

0.6.1.1 Testing coefficients

Suppose that we know that the coefficient for mpg ~ cyl is known (-2.88 for the linear effect). We can write a test
that checks that expectation:

test that("lm returns the expected coefficients", {
expect equal(coef(cmod)([2], -2.88)
1)

Due to floating point precision, this is probably insufficient - R will not return exactly -2.88. We can use the
tolerance argument to check that the coefficient is within a certain range (we could also round the coefficient). We
also need to tell expect_equal to ignore the names attribute of the vector, otherwise it compares the whole object,
attributes and all:

test that("lm returns the expected coefficients", {
expect equal(coef(cmod)[2], -2.88, tolerance = 0.01, check.attributes = FALSE)
1)

We can do the same for the coefficients from the model with cyl f. This time, we can derive the values from the
tapply function as, in this case, the coefficients are just the means:

test that("lm returns the expected coefficients", {
means <- tapply(mtcars$mpg, mtcars$cyl, mean)

Writing function tests 712

SCTO®:
PLATFORMS

coefs <- coef(fmod)

expect equal(coefs[1], means[1], check.attributes = FALSE)

expect equal(coefs[2], means[2] - means[1l], check.attributes = FALSE)

expect equal(coefs[3], means[3] - means[1l], check.attributes = FALSE)
1)

We have now performed 4 tests (the expectations) in two test_that calls. We can also combine them together:

test that("lm returns the expected coefficients", {
expect equal(coef(cmod)[2], -2.88, tolerance = 0.01, check.attributes = FALSE)

means <- tapply(mtcars$mpg, mtcars$cyl, mean)

coefs <- coef(fmod)

expect equal(coefs[1l], means[1l], check.attributes = FALSE)
expect equal(coefs[2], means[2] - means[1l], check.attributes
expect equal(coefs[3], means[3] - means[1l], check.attributes

b

FALSE)
FALSE)

Whether to put them in one or two calls is up to the author. Distributing them across more calls helps identify
which tests fail, but it also makes the file longer.

0.6.1.1.1 A note on selecting tolerances

The tolerance is a tricky thing to select. It is a balance between being too strict and too lenient. If the tolerance is
too strict, then the test will fail when the function is working as expected. If the tolerance is too lenient, then the
test will pass when the function is not working as expected.

Consider the example above. We compared -2.88 with the coefficient which R reports to (at least) 5 decimal
places. In this case, it does not make sense to use a tolerance of less than 0.01 because we only know the
coefficient to two decimal places (even though we would have access to a far greater precision had we worked for
it).

Generally speaking, values that are easy to calculate should probably have a lower tolerance. Values that are
very dependent on specifics of the implementation (e.g. maximisation algorithm, etc) should probably have a
higher tolerance. This is especially the case when using external software as a reference (e.g. Stata uses different
defaults settings to 1me4, causing differences in SEs). Simulation results, may also require a more lenient
tolerance.

0.6.1.2 Testing the standard errors against Stata

Suppose that we have used Stata as a reference software for the standard errors. We include the commands
used in the reference software in comments in the script, including the output and the information of the version of
the reference software.

write.csv(mtcars, "mtcars.csv", row.names = FALSE)

reference software: Stata 17.0 (revision 2024-02-13)

import delimited "mtcars.csv"

regress mpg cyl

[output truncated for brevity]

FF m o o oo e o e e o o e o e e e e e o emmmmmme e me——e-
mpg | Coefficient Std. err. t P>|t]| [95% conf. interval]
#H ommmmmmmm—maa- R e
cyl | -2.87579 .3224089 -8.92 0.000 -3.534237 -2.217343
cons | 37.88458 2.073844 18.27 0.000 33.64922 42.11993
e

[output truncated for brevity]
regress mpg i.cyl
[output truncated for brevity]

Writing function tests 8/12

SCTO®-
BLATFORMS

We can then use the SE values from Stata in the tests, specifying a suitable tolerance (it's pretty simple to
calculate, so we can be quite stringent):

test that("Standard errors from LM are correct", {
expect equal(summary(cmod)$coefficients[2, 2], 0.322408,
tolerance = 0.00001)
expect equal(summary(fmod)$coefficients[2, 2], 1.558348,
tolerance = 0.00001)
expect equal(summary(fmod)$coefficients[3, 2], 1.298623,
tolerance = 0.0001)
1)

0.6.1.3 The completed test file

The test file including the tests above is then:

Write relevent tests for the function in here

Consider the type of function:

- is it deterministic or statistic?

- is it worth checking for errors/warnings under particular conditions?

data(mtcars)
mtcars$cyl f <- factor(mtcars$cyl)

cmod <- Ilm(mpg ~ cyl, data = mtcars)
fmod <- Im(mpg ~ cyl f, data = mtcars)

test that("lm returns the expected coefficients", {
expect equal(coef(cmod)[2], -2.88, tolerance = 0.01, check.attributes = FALSE)

means <- tapply(mtcars$mpg, mtcars$cyl, mean)

coefs <- coef(fmod)

expect equal(coefs[1], means[1], check.attributes = FALSE)

expect equal(coefs[2], means[2] - means[1l], check.attributes FALSE)

expect equal(coefs[3], means[3] - means[1l], check.attributes = FALSE)
1)

write.csv(mtcars, "mtcars.csv", row.names = FALSE)

reference software: Stata 17.0 (revision 2024-02-13)
import delimited "mtcars.csv"

regress mpg cyl

#

Source | SS df MS Number of obs = 32
#oomeeeee- e F(1, 30) = 79.56
Model | 817.712952 1 817.712952 Prob > F = 0.0000
Residual | 308.334235 30 10.2778078 R-squared = 0.7262
#ooeee e e Adj R-squared = 0.7171
Total | 1126.04719 31 36.3241028 Root MSE = 3.2059
#

) Dccmoocc-—-c--S---ooScSooScS----SScoSoSCSoSo-Co-o--SCoSSoSo--oS-co-occoocooSooco==-=
mpg | Coefficient Std. err. t P>t [95% conf. interval]
H# ommmmmmmamaaaa e T
cyl | -2.87579 .3224089 -8.92 0.000 -3.534237 -2.217343
cons | 37.88458 2.073844 18.27 0.000 33.64922 42.11993
<
regress mpg i.cyl

#

Source | SS df MS Number of obs = 32
oo R LR T F(2, 29) = 39.70
Model | 824.78459 2 412.392295 Prob > F = 0.0000
Residual | 301.262597 29 10.3883654 R-squared = 0.7325
#oeeeee e I Adj R-squared = 0.7140

Writing function tests 9/12

SCTO®:
PLATFORMS

Total | 1126.04719 31 36.3241028 Root MSE = 3.2231
#
<
mpg | Coefficient Std. err. t P>|t]| [95% conf. interval]
#H ommmmmmmm—maa- R e e e
cyl |

6 | -6.920779 1.558348 -4.44 0.000 -10.10796 -3.733599
8 | -11.56364 1.298623 -8.90 0.000 -14.21962 -8.907653
\

cons | 26.66364 .9718008 27.44 0.000 24.67608 28.65119
e

test that("Standard errors from lm are correct", {
expect equal(summary(cmod)$coefficients[2, 2], 0.322408,
tolerance = 0.0001)
expect equal(summary(fmod)$coefficients[2, 2], 1.558348,
tolerance = 0.0001)
expect equal(summary(fmod)$coefficients[3, 2], 1.298623,
tolerance = 0.0001)
1)

For 1m, other things that might be tested include the R-squared, the F-statistic, and the p-values. Generally
speaking, we might also want to test that the model is of the appropriate class (also im in this case), or that the
model has the expected number of coefficients, that the function issues warnings and/or errors at appropriate
times.

0.6.2 info.txt

It is easiest to write the info.txt file once all tests have been written. It provides a listing of what has been tested
in prose form and serves as a quick overview of the tests.

The default text the file contains a single line:
Tests for package stats
Extra details on the tests that we have performed should be added. In this case, we might modify it to:

Tests for package stats
- coefficients and SEs from a unvariate model with continuous and factor predictors. SEs were
checked against Stata.

Where tests are for/from a specific version of the package, as might be the case for newly added or deprecated
functions, this should also be noted.

0.6.3 setup-stats.R

This file should contain the code necessary to load the package and any other packages that are required for the
tests. In this case, we need the stats package and the testthat package.

The testthat package is always needed. In general, loading the package is necessary. As stats is a standard R
package, it's no necessary in this case.

We also try to leave the environment as we found it, so we detach the packages via the withr: :defer function.
Again, in this case, we don’'t want to detach it, as it is a standard package.

if(!require(stats)) install.packages("stats")
library(stats)
library(testthat)

Writing function tests 10/12

SCTO™®:
PLATFORMS

withr::defer({
most of the time, we would want to detach packages, in this case we don't
detach(package:stats)

}, teardown env())

0.6.4 Testing that the tests work

Assuming the tests are in a folder called stats, which is within our current working directory, we can run the tests
with:

validation::test("stats", download = FALSE)

We specify download = FALSE because validation::test will download the files from GitHub and run those tests
by default. download = FALSE tells it to use the local copy of the files instead.

The output should return various information on our tests and system. The first part comes from testthat itself
while it runs the tests, the remainder (after “Copy and paste the following...”) provides summary information that
should be copied into a github issue :

v | FW S OK | Context
v | 7 | lm

= Results
[FAIL © | WARN 0 | SKIP O | PASS 7]
Copy and paste the following output into the indicated sections of a new issue

ISSUE NAME:
[Package test]: stats version 4.3.1

Name of the package you have validated:
stats

What version of the package have you validated?
4.3.1

When was this package tested?
2024-03-18

What was tested?
Tests for package stats

- coefficients and SEs from a unvariate model with continuous and factor predictors. SEs were
checked against Stata.

Test results
PASS

Test output:

[file |context |test | nb| passed|skipped |error | warning|
[EEEEEEEEE [EEEREEES | £mmm e [-=t]-nn-- A EEEERRE [t--n-- R |
|test-1m.R |1 |tm returns the expected coefficients | 8| 4| FALSE | FALSE | 4|
|test-1m.R |1m |Standard errors from lm are correct | 3| 3| FALSE | FALSE | 0]

SessionInfo:

R version 4.3.1 (2023-06-16 ucrt)

Platform: x86 64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default

Writing function tests 1112

SCTO®:
PLATFORMS

locale:

[1] LC COLLATE=German Switzerland.utf8 LC CTYPE=German Switzerland.utf8
[3] LC_MONETARY=German_ Switzerland.utf8 LC NUMERIC=C

[5] LC TIME=German Switzerland.utf8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] graphics grDevices utils datasets methods base

other attached packages:
[1] gh 1.4.0 validation 0.1.0 testthat 3.2.0

loaded via a namespace (and not attached):

[1] xfun_0.40 httr2 0.2.3 htmlwidgets 1.6.2 devtools_2.4.5
[5] remotes 2.4.2.1 processx 3.8.2 callr 3.7.3 vctrs 0.6.5
[9] tools 4.3.1 ps 1.7.5 generics 0.1.3 curl 5.1.0
[13] tibble 3.2.1 fansi 1.0.6 pkgconfig 2.0.3 desc 1.4.2
[17] lifecycle 1.0.4 compiler 4.3.1 stringr 1.5.1 brio 1.1.3
[21] httpuv 1.6.12 htmltools 0.5.6.1 usethis 2.2.2 yaml 2.3.8
[25] pkgdown 2.0.7 tidyr 1.3.0 later 1.3.1 pillar 1.9.0
[29] crayon 1.5.2 urlchecker 1.0.1 ellipsis 0.3.2 cranlogs 2.1.1
[33] rsconnect 1.1.1 cachem 1.0.8 sessioninfo 1.2.2 mime 0.12

[37] tidyselect 1.2.0 digest 0.6.33 stringi 1.8.3 dplyr 1.1.4
[41] purrr_1.0.2 rprojroot 2.0.3 fastmap 1.1.1 cli 3.6.2

[45] magrittr 2.0.3 pkgbuild 1.4.2 utf8 1.2.4 withr 3.0.0
[49] waldo 0.5.1 prettyunits 1.2.0 promises 1.2.1 rappdirs 0.3.3
[53] roxygen2 7.3.0 rmarkdown_2.25 httr_1.4.7 gitcreds 0.1.2
[57] stats 4.3.1 memoise 2.0.1 shiny 1.8.0 evaluate 0.22
[61] knitr 1.45 miniUI 0.1.1.1 profvis 0.3.8 rlang 1.1.3
[65] Rcpp 1.0.11 xtable 1.8-4 glue 1.7.0 xml2_1.3.5
[69] pkgload 1.3.3 rstudioapi 0.15.0 jsonlite 1.8.7 R6 2.5.1

[73] fs_1.6.3

Where is the test code located for these tests?
please enter manually

Where the test code is located in a git repository, add the git commit SHA
please enter manually, if relevant

0.7 Hints for working with GitHub

RStudio has a built-in git interface, which is a good way to manage your git repositories if you use RStudio.

The Happy Git and GitHub for the useR book is a comprehensive guide to working with git and GitHub. Of
particular use are chapters 9 to 12 on connecting your computer with GitHub.

The GitHub desktop app is a good way to manage your git repositories if you are not comfortable with the
command line. This is also an easy way to connect your computer with your GitHub account. There are many
other GUIs for working with git repositories. See here for a listing of some of them.

Writing function tests 12/12

https://happygitwithr.com/
https://git-scm.com/downloads/guis

	High level summary
	Core principles
	test_skeleton helps build the structure
	Writing tests
	Compare computation to a reference value
	Testing for errors, warnings and other messages
	Testing booleans
	Testing for NULL
	Testing the type of object returned (base R)
	Testing the class (s3) of an object
	Running tests under certain conditions

	Submitting tests to the platform
	Worked example
	test-lm.R
	Testing coefficients
	A note on selecting tolerances

	Testing the standard errors against Stata
	The completed test file

	info.txt
	setup-stats.R
	Testing that the tests work

	Hints for working with GitHub

