
Writing function tests

 Document development, review and version history

Development and Review

Name Date

Authored/Revised by XXXXXXXXXX xxxx-xx-xx

Reviewed by YYYYYYYYYY xxxx-xx-xx

Released by ZZZZZZZZZZ xxxx-xx-xx

Version History

Version Date Author Summary of Changes

0.1 xxxx-xx-xx XXXXXXXXXX Initial draft

The validation package contains a set of functions to assist in the running and reporting of
tests that have been published on the SCTO platform. The tests themselves are located in
the validation_tests repository. The results of the tests are then published as issues in the
pkg_validation repository.

Tests are written using functions from the testthat package, and can be downloaded, run, and
reported using the functions in the validation package.

High level summary
This section gives a very high level overview of the steps in the process. Refer to the following
sections for more in depth information.

1. fork the validation_tests repository to your own GitHub account
2. clone the forked repository to your local machine
3. use validation::test_skeleton() to create the necessary files for testing a new package or

function
4. write the tests using the testthat package
5. test your new tests with validation::test()
6. commit your changes to git and push them to your GitHub fork
7. create a pull request to the validation_tests repository
8. address any issues highlighted by the reviewer

Core principles
• the unit of testing is the function, not the package

1

www.github.com/SwissClinicalTrialOrganisation/validation_tests
www.github.com/SwissClinicalTrialOrganisation/pkg_validation
https://testthat.r-lib.org/

• it is not necessary to test all functions, only those that are used in the product
‣ e.g. assuming that the lme4 package is classified as being high risk, it may be that initially

only lmer is tested.
‣ Some time later, glmer is used in a product, and so it is necessary to test this function as well.

• tests should be written in a way that they can be run automatically
• tests are written using the testthat package
• tests are documented sufficiently to allow others to understand what is being tested and why

(e.g. the documentation establishes the user requirements)
‣ this principle is not thoroughly applied in this document as it is informative only. See existing

examples in the repository.

test_skeleton helps build the structure
The test_skeleton function can be used to create the relevant folder structure for testing a new
package, or adding a file for testing additional functions. In the code below, substitute pkg with
the name of the package to be tested and add the names of the function(s) you want to test in the
funs argument.

test_skeleton("pkg", funs = c("fun", "fun2", "etc"))

This will create a set of files in your working directory:

-- pkg
 +- info.txt
 +- setup-pkg.R
 +- test-fun.R
 +- test-fun2.R
 +- test-etc.R

• info.txt file will contain the name of the package and a freetext description of what is tested,
• setup-pkg.R is for any necessary setup code (e.g. installation of the package),
• for each function in the funs argument, a test-function.R file is created, which will contain

the actual testing code.

In the event that the package already has tests, the test_skeleton function will not overwrite
the existing files, only adding any necessary test-function.R files.

Add the relevant tests to the test-function.R files and check that they work as expected (run
test("package", download = FALSE)).

Writing tests
Testing is performed via the testthat framework. All tests for a given function should be placed
in a dedicated test-function.R file.

Each test is comprised of one or more expectations and a descriptive name.

E.g.

2

https://testthat.r-lib.org/

Where multiple tests are to be made on what could be a single object, it is often useful to create
the object outside of the test_that function. This is particularly useful when different descrip-
tive texts should be shown for the tests (e.g. perhaps the coefficients and standard errors from
a model):

If objects are only useful to the test, they can be created within the test_that function.

Making the description of the test meaningful is important, as it will help the user diagnose where
the problem is.

testthat supports a large number of expectations, which are documented in the testthat
documentation. We demonstrate a few examples below.

Compare computation to a reference value
To test the computation of the function, the following code must be added to the testing file, for
as many test cases as considered appropriate:

Where f is the function to be tested, x are the input parameters for the function and y is the ex-
pected returned value.

Note that is/may be necessary/desirable to set a tolerance for floating point comparisons. This can
be done with the tolerance argument.

Testing for errors, warnings and other messages
To test whether, under certain conditions, the function returns an error, a warning or a message,
the following corresponding code can be adapted, for as many test cases as considered appropri-
ate:

Where f is the function to be tested, x are the arguments that define the conditions. Use the regexp
argument to check for a particular error, warning or message.

In contrast, to test whether the function runs without returning an error, a warning or a message,
the following corresponding code can be adapted, for as many test cases as considered appropri-
ate:

Testing booleans
To test whether, under certain conditions, the function returns TRUE or FALSE, adapt the follow-
ing code as appropriate:

Where f is the function to be tested, x are the arguments that define the conditions.

Testing for NULL
To test whether, under certain conditions, the function returns NULL, the following code can be
adapted, for as many test cases as considered appropriate:

Testing the type of object returned (base R)
To test whether, the function returns an object of a certain type, the following code can be adapted,
for as many test cases as considered appropriate:

3

https://testthat.r-lib.org/reference/index.html
https://testthat.r-lib.org/reference/index.html

Where f is the function to be tested, x are the arguments that define the conditions and type is
any of the following: “integer”, “character”, “factor”, “logical”, “double”.

Testing the class (s3) of an object
To test whether, the function returns an object of class s3, the following code can be adapted, for
as many cases as considered appropriate:

Where f is the function to be tested, x are the arguments that define the conditions and class is,
among others, any of the following: “data.frame”, “factor”, “Date”, “POSIXct”, etc.

Running tests under certain conditions
On occasion, it may be desirable to restrict the tests to specific package versions. This can be done
by using the skip_if functions in testthat.

For example, the pivot functions we introduced to tidyr in version 1.0.0. If we have tests on those
functions, we can restrict them to versions 1.0.0 and above with the following code:

skip_if(packageVersion("tidyr") < "1.0.0")

This line can be placed at the top of the test file, before any tests are run. The equivalent can be
done for versions below a certain version, which might be useful for deprecated functions.

It might be suitable to stop tests from being run if the internet is not available:

skip_if_offline()

Or if a package can only be run on a specific operating system:

skip_on_os("mac")

Submitting tests to the platform
Once you have added the necessary tests, add the files to the validation_tests repository. The eas-
iest way is to create a fork of the repository, then navigate to the tests folder, click on “Add file”
and then “Upload files”. Now you can simply drag the pkg folder into the browser window and
commit the change. You can now create a pull request to the original repository to incorporate
your code. It is also possible to fork the repository, clone it to your computer and make the commit
there, but this is not strictly necessary.

At this stage, the four-eye principle will be applied to the pull request to check the adequacy and
quality of the tests and code. If the reviewer agrees with your tests, they will be merged into the
package. If they note any issues, which you will see as comments in the GitHub pull request, you
will need to address them before the tests can be merged.

Once merged, the tests can be run via the validation package validation::test("packagename")
and documented in the repository at https://github.com/SwissClinicalTrialOrganisation/pkg_
validation.

4

https://github.com/SwissClinicalTrialOrganisation/validation_tests
https://github.com/SwissClinicalTrialOrganisation/pkg_validation
https://github.com/SwissClinicalTrialOrganisation/pkg_validation

Worked example
Theory is all well and good, but it’s always useful to see how that would be in practice.

Assume that we want to check that the lm function from the stats package works as expected. We
can write a test file that checks that the function returns the expected coefficients and standard
errors.

The following assumes that we have cloned the validation_tests repository to our computer and
we are within that project.

To begin with, we construct the testing files, specifically the test_skeleton function. We only
want to test the lm function, so we only pass that to the second argument. We also specify the
dir argument to tell R where to create the new files:

This will have created a stats folder within tests. Within that folder, there will be files called
info.txt, setup-stats.R, and test-lm.R.

test-lm.R
First we will write the actual tests that we want to run. Tests are entered into the test-lm.R file.
Opening that file, we see that there are just a few comments at the top of the file, with some
reminders.

Write relevent tests for the function in here
Consider the type of function:
- is it deterministic or statistic?
- is it worth checking for errors/warnings under particular conditions?

We decide that we will use the mtcars dataset as our basis for testing lm, so we can load the dataset.
We want to test both the linear effect of the number of cylinders on the miles per gallon, and the
effect of the number of cylinders (cyl), as well as when cyl is treated as a factor.

Write relevent tests for the function in here
Consider the type of function:
- is it deterministic or statistic?
- is it worth checking for errors/warnings under particular conditions?

data(mtcars)
mtcars$cyl_f <- factor(mtcars$cyl)

Note that if there are multiple functions being tested (each in their own test-function.R file) that
require the same data, we can load and prepare the data in the setup-stats.R file.

We can also define the models that we want to test:

cmod <- lm(mpg ~ cyl, data = mtcars)
fmod <- lm(mpg ~ cyl_f, data = mtcars)

5

We do not include the model definitions within a test_that call because we will use the same
models in multiple tests. Again, if we needed to use those models for testing multiple functions,
we could define them in the setup file.

Testing coefficients
Suppose that we know that the coefficient for mpg ~ cyl is known (-2.88 for the linear effect). We
can write a test that checks that expectation:

test_that("lm returns the expected coefficients", {
 expect_equal(coef(cmod)[2], -2.88)
})

Due to floating point precision, this is probably insufficient - R will not return exactly −2.88. We
can use the tolerance argument to check that the coefficient is within a certain range (we could
also round the coefficient). We also need to tell expect_equal to ignore the names attribute of the
vector, otherwise it compares the whole object, attributes and all:

test_that("lm returns the expected coefficients", {
 expect_equal(coef(cmod)[2], -2.88, tolerance = 0.01, check.attributes = FALSE)
})

We can do the same for the coefficients from the model with cyl_f. This time, we can derive the
values from the tapply function as, in this case, the coefficients are just the means:

test_that("lm returns the expected coefficients", {
 means <- tapply(mtcars$mpg, mtcars$cyl, mean)
 coefs <- coef(fmod)
 expect_equal(coefs[1], means[1], check.attributes = FALSE)
 expect_equal(coefs[2], means[2] - means[1], check.attributes = FALSE)
 expect_equal(coefs[3], means[3] - means[1], check.attributes = FALSE)
})

We have now performed 4 tests (the expectations) in two test_that calls. We can also combine
them together:

test_that("lm returns the expected coefficients", {
 expect_equal(coef(cmod)[2], -2.88, tolerance = 0.01, check.attributes = FALSE)

 means <- tapply(mtcars$mpg, mtcars$cyl, mean)
 coefs <- coef(fmod)
 expect_equal(coefs[1], means[1], check.attributes = FALSE)
 expect_equal(coefs[2], means[2] - means[1], check.attributes = FALSE)
 expect_equal(coefs[3], means[3] - means[1], check.attributes = FALSE)
})

6

Whether to put them in one or two calls is up to the author. Distributing them across more calls
helps identify which tests fail, but it also makes the file longer.

A note on selecting tolerances
The tolerance is a tricky thing to select. It is a balance between being too strict and too lenient. If
the tolerance is too strict, then the test will fail when the function is working as expected. If the
tolerance is too lenient, then the test will pass when the function is not working as expected.

Consider the example above. We compared −2.88 with the coefficient which R reports to (at least)
5 decimal places. In this case, it does not make sense to use a tolerance of less than 0.01 because
we only know the coefficient to two decimal places (even though we would have access to a far
greater precision had we worked for it).

Generally speaking, values that are easy to calculate should probably have a lower tolerance. Val-
ues that are very dependent on specifics of the implementation (e.g. maximisation algorithm, etc)
should probably have a higher tolerance. This is especially the case when using external software
as a reference (e.g. Stata uses different defaults settings to lme4, causing differences in SEs). Sim-
ulation results, may also require a more lenient tolerance.

Testing the standard errors against Stata
Suppose that we have used Stata as a reference software for the standard errors. We include the
commands used in the reference software in comments in the script, including the output and the
information of the version of the reference software.

write.csv(mtcars, "mtcars.csv", row.names = FALSE)
reference software: Stata 17.0 (revision 2024-02-13)
import delimited "mtcars.csv"
regress mpg cyl
[output truncated for brevity]
#
--
mpg | Coefficient Std. err. t P>|t| [95% conf. interval]

+--
cyl | -2.87579 .3224089 -8.92 0.000 -3.534237 -2.217343
_cons | 37.88458 2.073844 18.27 0.000 33.64922 42.11993
#
--
[output truncated for brevity]
regress mpg i.cyl
[output truncated for brevity]

We can then use the SE values from Stata in the tests, specifying a suitable tolerance (it’s pretty
simple to calculate, so we can be quite stringent):

7

test_that("Standard errors from LM are correct", {
 expect_equal(summary(cmod)$coefficients[2, 2], 0.322408,
 tolerance = 0.00001)
 expect_equal(summary(fmod)$coefficients[2, 2], 1.558348,
 tolerance = 0.00001)
 expect_equal(summary(fmod)$coefficients[3, 2], 1.298623,
 tolerance = 0.0001)
})

The completed test file
The test file including the tests above is then:

Write relevent tests for the function in here
Consider the type of function:
- is it deterministic or statistic?
- is it worth checking for errors/warnings under particular conditions?

data(mtcars)
mtcars$cyl_f <- factor(mtcars$cyl)

cmod <- lm(mpg ~ cyl, data = mtcars)
fmod <- lm(mpg ~ cyl_f, data = mtcars)

test_that("lm returns the expected coefficients", {
 expect_equal(coef(cmod)[2], -2.88, tolerance = 0.01, check.attributes = FALSE)

 means <- tapply(mtcars$mpg, mtcars$cyl, mean)
 coefs <- coef(fmod)
 expect_equal(coefs[1], means[1], check.attributes = FALSE)
 expect_equal(coefs[2], means[2] - means[1], check.attributes = FALSE)
 expect_equal(coefs[3], means[3] - means[1], check.attributes = FALSE)
})

write.csv(mtcars, "mtcars.csv", row.names = FALSE)
reference software: Stata 17.0 (revision 2024-02-13)
import delimited "mtcars.csv"
regress mpg cyl
#
Source | SS df MS Number of obs = 32
-------------+---------------------------------- F(1, 30) = 79.56
Model | 817.712952 1 817.712952 Prob > F = 0.0000
Residual | 308.334235 30 10.2778078 R-squared = 0.7262
-------------+---------------------------------- Adj R-squared = 0.7171
Total | 1126.04719 31 36.3241028 Root MSE = 3.2059
#
#
--

8

mpg | Coefficient Std. err. t P>|t| [95% conf. interval]

+--
cyl | -2.87579 .3224089 -8.92 0.000 -3.534237 -2.217343
_cons | 37.88458 2.073844 18.27 0.000 33.64922 42.11993
#
--
regress mpg i.cyl
#
Source | SS df MS Number of obs = 32
-------------+---------------------------------- F(2, 29) = 39.70
Model | 824.78459 2 412.392295 Prob > F = 0.0000
Residual | 301.262597 29 10.3883654 R-squared = 0.7325
-------------+---------------------------------- Adj R-squared = 0.7140
Total | 1126.04719 31 36.3241028 Root MSE = 3.2231
#
#
--
mpg | Coefficient Std. err. t P>|t| [95% conf. interval]

+--
cyl |
6 | -6.920779 1.558348 -4.44 0.000 -10.10796 -3.733599
8 | -11.56364 1.298623 -8.90 0.000 -14.21962 -8.907653
|
_cons | 26.66364 .9718008 27.44 0.000 24.67608 28.65119
#
--

test_that("Standard errors from lm are correct", {
 expect_equal(summary(cmod)$coefficients[2, 2], 0.322408,
 tolerance = 0.0001)
 expect_equal(summary(fmod)$coefficients[2, 2], 1.558348,
 tolerance = 0.0001)
 expect_equal(summary(fmod)$coefficients[3, 2], 1.298623,
 tolerance = 0.0001)
})

For lm, other things that might be tested include the R-squared, the F-statistic, and the p-values.
Generally speaking, we might also want to test that the model is of the appropriate class (also lm
in this case), or that the model has the expected number of coefficients, that the function issues
warnings and/or errors at appropriate times.

info.txt
It is easiest to write the info.txt file once all tests have been written. It provides a listing of what
has been tested in prose form and serves as a quick overview of the tests.

The default text the file contains a single line:

9

Tests for package stats

Extra details on the tests that we have performed should be added. In this case, we might modify
it to:

Tests for package stats
- coefficients and SEs from a unvariate model with continuous and factor
predictors. SEs were checked against Stata.

Where tests are for/from a specific version of the package, as might be the case for newly added
or deprecated functions, this should also be noted.

setup-stats.R
This file should contain the code necessary to load the package and any other packages that are
required for the tests. In this case, we need the stats package and the testthat package.

The testthat package is always needed. In general, loading the package is necessary. As stats is
a standard R package, it’s no necessary in this case.

We also try to leave the environment as we found it, so we detach the packages via the
withr::defer function. Again, in this case, we don’t want to detach it, as it is a standard package.

if(!require(stats)) install.packages("stats")
library(stats)
library(testthat)
withr::defer({
 # most of the time, we would want to detach packages, in this case we don't
 # detach(package:stats)
}, teardown_env())

Testing that the tests work
Assuming the tests are in a folder called stats, which is within our current working directory,
we can run the tests with:

validation::test("stats", download = FALSE)

We specify download = FALSE because validation::test will download the files from GitHub
and run those tests by default. download = FALSE tells it to use the local copy of the files instead.

The output should return various information on our tests and system. The first part comes from
testthat itself while it runs the tests, the remainder (after “Copy and paste the following…”) pro-
vides summary information that should be copied into a github issue :

✔ | F W S OK | Context
✔ | 7 | lm

10

══ Results ══
[FAIL 0 | WARN 0 | SKIP 0 | PASS 7]
Copy and paste the following output into the indicated sections of a new issue

ISSUE NAME:
[Package test]: stats version 4.3.1

Name of the package you have validated:
stats

What version of the package have you validated?
4.3.1

When was this package tested?
2024-03-18

What was tested?
Tests for package stats
 - coefficients and SEs from a unvariate model with continuous and factor
predictors. SEs were checked against Stata.

Test results
PASS

Test output:

|file |context |test | nb| passed|skipped |
error | warning|
|:---------|:-------|:------------------------------------|--:|------:|:-------|:-----|-------:|
|test-lm.R |lm |lm returns the expected coefficients | 8| 4|FALSE |
FALSE | 4|
|test-lm.R |lm |Standard errors from lm are correct | 3| 3|FALSE |
FALSE | 0|

SessionInfo:
R version 4.3.1 (2023-06-16 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:
[1] LC_COLLATE=German_Switzerland.utf8 LC_CTYPE=German_Switzerland.utf8
[3] LC_MONETARY=German_Switzerland.utf8 LC_NUMERIC=C

11

[5] LC_TIME=German_Switzerland.utf8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] graphics grDevices utils datasets methods base

other attached packages:
[1] gh_1.4.0 validation_0.1.0 testthat_3.2.0

loaded via a namespace (and not attached):
 [1] xfun_0.40 httr2_0.2.3 htmlwidgets_1.6.2 devtools_2.4.5
 [5] remotes_2.4.2.1 processx_3.8.2 callr_3.7.3 vctrs_0.6.5
 [9] tools_4.3.1 ps_1.7.5 generics_0.1.3 curl_5.1.0
[13] tibble_3.2.1 fansi_1.0.6 pkgconfig_2.0.3 desc_1.4.2
[17] lifecycle_1.0.4 compiler_4.3.1 stringr_1.5.1 brio_1.1.3
[21] httpuv_1.6.12 htmltools_0.5.6.1 usethis_2.2.2 yaml_2.3.8
[25] pkgdown_2.0.7 tidyr_1.3.0 later_1.3.1 pillar_1.9.0
[29] crayon_1.5.2 urlchecker_1.0.1 ellipsis_0.3.2 cranlogs_2.1.1
[33] rsconnect_1.1.1 cachem_1.0.8 sessioninfo_1.2.2 mime_0.12
[37] tidyselect_1.2.0 digest_0.6.33 stringi_1.8.3 dplyr_1.1.4
[41] purrr_1.0.2 rprojroot_2.0.3 fastmap_1.1.1 cli_3.6.2
[45] magrittr_2.0.3 pkgbuild_1.4.2 utf8_1.2.4 withr_3.0.0
[49] waldo_0.5.1 prettyunits_1.2.0 promises_1.2.1 rappdirs_0.3.3
[53] roxygen2_7.3.0 rmarkdown_2.25 httr_1.4.7 gitcreds_0.1.2
[57] stats_4.3.1 memoise_2.0.1 shiny_1.8.0 evaluate_0.22
[61] knitr_1.45 miniUI_0.1.1.1 profvis_0.3.8 rlang_1.1.3
[65] Rcpp_1.0.11 xtable_1.8-4 glue_1.7.0 xml2_1.3.5
[69] pkgload_1.3.3 rstudioapi_0.15.0 jsonlite_1.8.7 R6_2.5.1
[73] fs_1.6.3

Where is the test code located for these tests?
please enter manually

Where the test code is located in a git repository, add the git commit SHA
please enter manually, if relevant

Hints for working with GitHub
RStudio has a built-in git interface, which is a good way to manage your git repositories if you
use RStudio.

The Happy Git and GitHub for the useR book is a comprehensive guide to working with git and
GitHub. Of particular use are chapters 9 to 12 on connecting your computer with GitHub.

The GitHub desktop app is a good way to manage your git repositories if you are not comfortable
with the command line. This is also an easy way to connect your computer with your GitHub

12

https://happygitwithr.com/

account. There are many other GUIs for working with git repositories. See here for a listing of
some of them.

13

https://git-scm.com/downloads/guis
https://git-scm.com/downloads/guis

	High level summary
	Core principles
	test_skeleton helps build the structure
	Writing tests
	Compare computation to a reference value
	Testing for errors, warnings and other messages
	Testing booleans
	Testing for NULL
	Testing the type of object returned (base R)
	Testing the class (s3) of an object
	Running tests under certain conditions

	Submitting tests to the platform
	Worked example
	test-lm.R
	Testing coefficients
	A note on selecting tolerances

	Testing the standard errors against Stata
	The completed test file

	info.txt
	setup-stats.R
	Testing that the tests work

	Hints for working with GitHub

